$df = -\theta(.93-f) d(G_{21})$,

which corresponds closely with the relation found by Magee⁴⁷ to describe athermal results for the gamma to alpha transformation, Eq. (5.3). Although there is no obvious connection, Magee found, for carbon alloys with less than 1.2 percent carbon, a value for θ which is 14 times larger than θ from Fig. 5.6.

Due to the large uncertainties in 1-f for large values of P shown in Fig. 5.6, one might consider data only for stresses less than or equal to 204 kbar. These data are well fitted by a linear relation between ln(1-f) and G_{21} . They yield a value of θ equal to 4,048 gm/Mbar cm³, less than two-thirds the previous value.

Equation (5.17) can be interpreted in the following way: G_{21} is driving force which causes the transformation to proceed. It must exceed a threshold value, A, before the transformation is initiated. For unknown reasons the transformation proceeds only as G_{21} is increased. If, for example, nucleation sites exist which are activated at different stress levels, increases in P produce increases in G_{21} , more nucleation sites are activated, and the transformation proceeds incrementally. The calculation of nucleation sites described in Section 5.3 provides a detailed model of such a situation, Eq. (5.14). In that case, however, the proportionality parameter θ is not constant but varies over a wide range of values in the mixed phase region. If this transformation is martensitic and transformation occurs with constant average plate volume, V_{p} , of 10^{-8} cm³, then

88

(5.18)

values of θ are obtained by multiplying V_p by entries in the last column of Table 5.2. This gives $\theta = 7 \times 10^{-23}$ /Mbar cm³ for $G_{21} = A$ and $\theta = 1.2 \times 10^{14}$ gm/Mbar cm³ for $G_{21} = 2A$. These values are far from observed values, which is not surprising considering the unreality of the basic assumption that nucleation is occurring in the homogeneous lattice.

Values for θ calculated from Eq. (5.14) come much closer to the measured value when the homogeneous model is modified by assuming spherical pre-existing embryos of phase 2. For this case, if martensitic plate volume $V_p = 10^{-8} \text{ cm}^3$ is 1 percent of the grain volume for 0.1-mm-diameter grains, N_0 can be calculated by dividing values of dN^*/dG_{21} in the last column of Table 5.2 into $-N/V_p \theta = 6.4 \times 10^{34}$. This gives $N_0 = 8.3 \times 10^{48}/\text{cm}^3$ for $G_{21} = A$, $N_0 = 5.3 \times 10^{12}/\text{cm}^3$ for $G_{21} = 2A$, and $N_0 = 1.28 \times 10^9/\text{cm}^3$ for $G_{21} = 3A$. These values for N_0 approach seemingly realistic values for pre-existing sites since the number of twins required to account for all the plastic strain in shocked iron at 130 kbar was inferred from Johnson and Rhode⁵⁶ to be about $10^7/\text{cm}^3$.

The above calculations show how a relation between dN and dG_{21} can be established, and although a detailed model to explain the form of Eq. (5.17) has not been produced, its similarity to the Magee equation strengthens the link between the alpha to epsilon, shock-induced transformation and the athermal, martensitic, gamma to alpha transformations in iron. The calculation also suggests a basis for understanding of both athermal gamma to alpha and shock-induced alpha to epsilon transformations.